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Lazy plumes
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We examine the dynamics of turbulent lazy plumes rising from horizontal area sources
and from vertically distributed line sources into a quiescent environment of uniform
density. First, we consider plumes with internal buoyancy flux gain and, secondly,
plumes from horizontal area sources that have significant momentum flux deficits. We
re-cast the conservation equations of Morton et al. (1956) for a constant entrainment
coefficient (α) in terms of three dimensionless parameters: the plume radius β; a
parameter Γ characterizing the local balance of momentum, buoyancy and volume
fluxes; and a parameter Λ that characterizes the rate of internal buoyancy flux gain
with height. For a plume with a linear internal buoyancy flux gain with height the
flow is shown to be a constant-velocity lazy plume. For highly lazy area sources we
derive exact solutions for the key plume parameters in terms of Γ and an approximate
solution for the variation of Γ with height. We show that near the source there is a
region of zero entrainment.

1. Introduction
The entrainment assumption, and flux conservation equations for a turbulent plume

in a quiescent environment were introduced by Morton, Taylor & Turner (1956,
hereafter referred to as MTT). They assumed a constant entrainment coefficient α

and developed equations for the local fluxes of volume, momentum and buoyancy
in an axisymmetric Boussinesq turbulent plume. This work was extended by Morton
(1959) who considered general sources including those with non-zero values of the
source volume flux (Q0), momentum flux (M0) and buoyancy flux (F0) and, in
particular, plumes with an excess of momentum flux at the source – so-called ‘forced
plumes’. Morton & Middleton (1973) further extended this work by developing scale
diagrams indicating the location of particular points of interest in a plume (e.g. the
neck height, virtual origin location, etc.) as a function of the source parameter

Γ (z = 0) = Γ0 =
5Q2

0F0

4αM
5/2
0

, (1.1)

defined at the source z = 0. This work identified both ‘forced plumes’ and ‘lazy plumes’
which were classified based on the balance of fluxes (1.1) at the source. A lazy plume
arises from a source with a deficit of momentum flux compared to a pure plume with
the same source buoyancy and volume fluxes. Lazy plumes have also been referred to
as ‘distributed’ plumes (Caulfield & Woods 1995). However, we retain the term ‘lazy’
as it implies reduced forcing, whereas ‘distributed’ implies an area source which could
be lazy (Γ > 1), pure (Γ = 1) or forced (Γ < 1).

The MTT plume conservation equations have also been used to solve for the
virtual origin location of a general plume source, e.g. Morton (1959), Caulfield &
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Woods (1995) and Hunt & Kaye (2001), the latter validating the theoretical predictions
of the origin location by means of measurements of saline plumes in the laboratory.
Further extensions to the MTT plume theory have been used to solve a range of
problems involving convection from localized sources including the behaviour of tur-
bulent fountains (Bloomfield & Kerr 2000) and non-Boussinesq plumes (Rooney &
Linden 1996; Carlotti & Hunt 2005). More recently, Fannelop & Webber (2003) have
examined large area source plumes with the non-Boussinesq terms included.

The bulk of the work on plumes has assumed that the entrainment coefficient α,
which relates the radial entrainment velocity to the mean vertical velocity in the plume,
is independent of height (MTT). The appropriateness of this assumption, however,
has been called into question by a number of authors. For example, List & Imberger
(1973) argue that the entrainment coefficient for a jet αj = 0.056 is considerably lower
than that for a pure plume αp = 0.085 (see Turner 1986 for a detailed discussion of the
entrainment assumption) and that using a constant α (= αp) to model forced plumes
will overpredict the radial growth rate. They suggest an entrainment function with α

varying with the square of the local plume Richardson number R(z) ∼ QF 1/2M−5/4

(see also Kotsovinos & List 1977). More recently Kaminski, Tait & Carazzo (2005)
argued that as well as the Richardson number dependence, α is a function of the
rate of change in the relative radii of the velocity and buoyancy profiles, a so-called
self-similarity drift. All these Richardson-number-dependent models potentially lead
to large values of α for large-Richardson-number (i.e. lazy) flows.

Another turbulent flow where the constant-α hypothesis has been called into
question is a plume with internal buoyancy flux gain. Bhat & Narasimha (1996)
argue that the traditional MTT conservation equations overpredict the volume flux
in clouds where latent heat release leads to an increase in the plume’s buoyancy
flux away from its source. This observation was the motivation behind the vortex
dynamics model of Sreenivas & Prasad (2000) that predicts a reduced entrainment
coefficient when ‘off-source’ heating occurs and when plumes are accelerating.

In this paper we focus on lazy plumes in uniform quiescent surroundings, and
re-write the MTT equations for a constant entrainment coefficient in terms of
the dimensionless plume parameter Γ , a dimensionless radius β and a ‘heating’
parameter Λ (§ 2). We then examine steady solutions of these equations for both
constant buoyancy flux plumes and plumes with internal buoyancy flux gains (§ 3).
Approximate solutions for the near-source flow are presented for plumes with a
constant buoyancy flux and large source Γ0, and these show that, to leading order,
there is zero entrainment near the source (§ 4). Conclusions are drawn in § 5.

2. Plume conservation equations
We start with the MTT conservation equations for a constant-buoyancy-flux plume

from a localized horizontal source in a quiescent uniform environment. The equations
are written for Gaussian profiles in terms of the fluxes of volume (πQ), momentum
(πM/2) and buoyancy (πF/2):

dQ

dz
= 2αM1/2,

dM

dz
= 2

QF

M
,

dF

dz
= 0. (2.1)

For a general area (or distributed) source, the source conditions are taken to be

Q = Q0, M = M0, F = F0 at z = 0, (2.2)
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where the subscript 0 signifies quantities at the actual source z = 0. From the source
conditions two length scales can be established, namely the source radius length LQ(0)
and the source momentum jet length LM (0) written as

LQ(0) =
5Q0

6αM
1/2
0

, LM (0) =

(
5M

3/2
0

9αF0

)1/2

, (2.3)

respectively. The length scale LQ is the distance from the actual source to the virtual
source of a pure plume while the jet length is the distance over which the source
momentum flux plays a significant role in the dynamics. It is also possible to define an
acceleration length scale LA ∼ Q3/5F −1/5 ∼ L

3/5
Q L

2/5
M that is the lazy plume analogue

of the forced plume jet length. However, we elect to use LQ rather than LA as it is
the natural length scale that appears when non-dimensionalizing the MTT equations
(see Hunt & Kaye 2001), and because the source parameter Γ0 used in the literature
is the square of the ratio of the length scales LQ and LM :

Γ0 =
LQ(0)2

LM (0)2
=

5Q2
0F0

4αM
5/2
0

, (2.4)

where Γ0 = 0 for a pure jet and Γ0 = 1 for a pure plume. Although Γ has been used
to characterize the source fluxes, it, along with LQ and LM , can be evaluated at any
height

Γ (z) =
5Q(z)2F (z)

4αM(z)5/2
. (2.5)

We now consider the simplest case of a plume with a linear increase in buoyancy
flux with height (ε). This is the case considered by Bhat & Narasimha (1996) and
will allow qualitative comparison with their results. For a more general variable-
buoyancy-flux model see Caulfield & Woods (1995). The conservation of buoyancy
flux (2.1) now becomes

dF

dz
= ε. (2.6)

This new term introduces an additional source length scale LF (0) given by

LF (0) =
F0

ε
, (2.7)

and we can define a second dimensionless parameter Λ as

Λ(z) =
L2

Q(z)

L2
F (z)

=
25Q(z)2ε2

36α2M(z)F (z)2
. (2.8)

Λ provides a measure of the off-source buoyancy flux gain relative to the local plume
fluxes. We now introduce the non-dimensional fluxes and height scaling

m =
M

M0

, q =
Q

Q0

, f =
F

F0

, ζ =
z

LQ(0)
. (2.9)

The radius b(z) and vertical velocity W (z) are scaled on their source values such that

β =
b

b0

=
q

m1/2
, w =

W

W0

=
m

q
. (2.10)
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Note the radius scaling is not b/LQ(0) but 5b/6αLQ(0). Equations (2.1) now become

dq

dζ
=

5

3
m1/2,

dm

dζ
=

4

3
Γ0

qf

m
,

df

dζ
= Λ1/2. (2.11)

The local parameters Γ and Λ may be expressed, relative to their source values, as

Γ

Γ0

=
q2f

m5/2
,

Λ

Λ0

=
q2

mf 2
, (2.12)

respectively. Differentiating (2.10) with respect to ζ , the rate of change with height of
the radius and the vertical velocity may be expressed in terms of q , f and m as

dβ

dζ
= m−1/2 dq

dζ
− 1

2
m−3/2q

dm

dζ
, (2.13)

dw

dζ
=

1

q

dm

dζ
− m

q2

dq

dζ
=

Γ0

3m

(
4 − 5

Γ

)
. (2.14)

Differentiating (2.12) with respect to ζ and substituting (2.11) and (2.10) we obtain

dΓ

dζ
=

Γ

β

(
10

3
(1 − Γ ) + Λ1/2

)
, (2.15)

dΛ

dζ
=

Λ

β

(
10

3
− 4

3
Γ − 2Λ1/2

)
. (2.16)

Finally, substituting (2.11) and (2.10) into (2.13) yields

dβ

dζ
=

1

3
(5 − 2Γ ). (2.17)

Thus we have three equations for the three unknowns (Γ, Λ, β)† with initial conditions

Γ = Γ0, Λ = Λ0, and β = 1 at ζ = 0. (2.18)

From (2.17) and (2.14) it is possible to establish two known results by inspection.
For Γ > 5/2 the plume radius will decrease with height, that is the plume will
contract. When Γ = 5/2 the plume sides will be vertical, referred to as the plume
neck. Also, for Γ > 5/4 the plume velocity will increase with height to a maximum
at Γ = 5/4 (see Caulfield 1991). In the next section we examine steady solutions of
these equations and in § 4 we present solutions for the near-source flow when Λ = 0.

3. Steady solutions
We seek steady solutions of (2.15), (2.16) and (2.17) subject to (2.18). For a horizontal

source with constant buoyancy flux (Λ = 0) there are two solutions: the pure-plume
solution (Γ = 1) and the jet solution (Γ = 0). For Λ > 0, that is with a vertical
buoyancy input, these solutions become unstable, and there is a further solution at
(Γ = 5

4
, Λ = 25

36
) (see Caulfield & Woods 1998 for a more detailed discussion of the

stability of these types of flows). Finally, there is a physically unrealistic solution at
(Γ = 0, Λ = 25

9
) which is not considered further here. These solutions are clearly

visible in the vector plot of {dΓ/dζ, dΛ/dζ} in figure 1. We now examine each
solution in turn.

† If we had scaled our vertical coordinate z on LA instead of LQ then (2.15)–(2.17) would be

identical, but for the right-hand side multiplied by Γ
−1/5
0 .
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Figure 1. Vector plot showing the direction of the vector {dΓ/dζ, dΛ/dζ} in (Γ,Λ) space.
Note that locally all arrows point away from the jet solution (0, 0) indicating it is unstable to
small perturbations in either Γ or Λ. The arrows along Γ = 0 point to (1, 0), indicating that
this solution is attractive provided Λ = 0. However, for all positive values of Λ all paths lead
to the stable solution ( 5

4
, 25

36
).

3.1. Jet Γ = 0, Λ = 0

A jet corresponds to both Γ and Λ being zero. From figure 1 we note that this
solution (point A) is unconditionally unstable as locally all arrows point away from
(0, 0). That is a jet is only possible if both Γ and Λ are identically zero for all z. Any
deviation will result in the flow developing towards one of the other solutions. From
(2.17) we see that the radius grows linearly with height as β = 5

3
ζ or, in dimensional

terms, b = 2αz.

3.2. Plume with constant buoyancy flux Γ = 1, Λ = 0

For Λ = 0, any initial value of Γ0 > 0 will lead to the pure-plume solution (point B
on figure 1) in the far field. However, even an infinitesimally small value of Λ will
drive the far-field flow towards the ( 5

4
, 25

36
) solution (§ 3.3). Again the radius grows

linearly with height as β = ζ or b = (6α/5)z. Substituting Γ = 1, f = 1 and β = ζ

into (2.10) and (2.12) we obtain the power-law solutions for Q and M without solving
the differential equations (2.11) directly:

Q =

(
5F

4α

)1/3 (
6αz

5

)5/3

, M =

(
5F

4α

)2/3 (
6αz

5

)4/3

. (3.1)

Note, however, that this solution does not account for a virtual origin offset, but only
evaluates the constant of proportionality in terms of α and the power-law scalings.

3.3. Plume with linear internal buoyancy flux gain Γ = 5
4
, Λ = 25

36

Provided both Γ0 and Λ0 are greater than zero the flow will tend towards the solution
Γ = 5

4
, Λ = 25

36
(point C on figure 1). In this case the plume is narrower (β = 5

6
ζ )

than a pure plume and lazy (Γ = 5
4

> 1). Also, from (2.14), it is a constant-velocity
flow. Substituting in the same manner as for the pure-plume case we can solve for
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the steady-state power-law behaviour of b, F , M and Q to get

b = αz, F ∼ εz, M ∼ ε2/3z2 ∼ F 2/3z4/3, Q ∼ ε1/3z2 ∼ F 1/3z5/3. (3.2)

Bhat & Narasimha (1996) observed that plumes with off-source heating are narrower
than pure plumes as predicted above using a constant-α model. They also observed
reduced entrainment. The inference they made was that this implied a reduced
entrainment coefficient (α). However, as seen in (2.1) the entrainment (dQ/dz) is
related to the product of the entrainment coefficient and the square root of the
momentum flux. If the plume is lazy this implies a momentum flux deficit and,
therefore, reduced entrainment, even for a constant-α model. Note also that for a
fully developed plume with internal buoyancy flux gain the model of Kaminski et al.
(2005) would predict an entrainment coefficient slightly higher than that for a pure
plume.

4. Solution for near-source flow with Λ(ζ ) = 0

We now examine a highly lazy constant-buoyancy-flux plume. However, first we
briefly discuss the question of whether or not the MTT model is applicable in the
near-source region, as it was derived for slender flows using an assumption of self
similarity. Despite this assumption these equations have been successfully applied to
flows that are not self-similar such as the near-source flow of a forced plume, Morton
(1959), and turbulent fountains, Bloomfield & Kerr (2000). We therefore believe that
examination of the MTT conservation equations for the near-source region of a
highly lazy plume warrants investigation and may provide valuable insight into the
behaviour of these flows.

Equations (2.15), with Λ = 0, and (2.17), subject to the source conditions Γ = Γ0

and β = 1 at ζ = 0, can be integrated to give β as a function of Γ ,

β =

{
Γ 1/2(1 − Γ )3/10Γ

−1/2
0 (1 − Γ0)

−3/10 for Γ0 < 1

Γ 1/2(Γ − 1)−3/10(Γ0 − 1)3/10Γ
−1/2
0 for Γ0 > 1.

(4.1)

For Γ0 > 5
2

the plume will contract immediately above the source (2.17) before
beginning to expand further from the source when Γ < 5

2
. We can therefore establish

from (4.1) a value for the minimum plume radius βmin, namely

βmin =
51/2

33/1021/5

(Γ0 − 1)3/10

Γ
1/2
0

. (4.2)

For Γ0 � 1 we have βmin ≈ 1.4Γ
−1/5
0 . Substituting (4.1) into (2.15) we obtain expres-

sions for the rate of change of Γ with height in terms of Γ only:

dΓ

dζ
=

{
ΩΓ 1/2(1 − Γ )7/10 for Γ0 < 1
−ΩΓ 1/2(Γ − 1)13/10 for Γ0 > 1,

(4.3)

where Ω = 10
3
Γ

1/2
0 /(Γ0 − 1)3/10. As expected, (4.3) shows that for lazy plumes Γ is a

decreasing function of height. From (4.3) we obtain an expression for ζ (Γ ):

ζ =




1

Ω

∫ Γ

Γ0

Γ −1/2(Γ − 1)−7/10 dΓ for Γ0 < 1

− 1

Ω

∫ Γ

Γ0

Γ −1/2(Γ − 1)−13/10 dΓ for Γ0 > 1.

(4.4)
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Figure 2. The neck height ζmin and minimum radius βmin for a lazy plume as a function of
the source parameter Γ0. The solid lines plotted against the left-hand axis are the values of
ζmin with the thick line representing the numerical solutions and the thin line the analytical
approximation (4.7). The dashed line plotted against the right-hand axis is βmin from (4.2).

The vertical height above the source at which the minimum radius (4.2) is reached is
given by (4.4) with the upper limit of integration Γ = 5

2
.

For large values of Γ , that is highly lazy plumes, we make the simplifying
approximation that Γ ≈ Γ − 1. This reduces (4.3) to

dΓ

dζ
≈ −Ω(Γ − 1)9/5. (4.5)

Note that (4.5) gives the correct limit as Γ → 1 but will approach that limit more
slowly than (4.3). The exact solution of (4.5) is given by

Γ = 1 +

(
4

5
Ωζ + (Γ0 − 1)−4/5

)−5/4

. (4.6)

Substituting Γ = Γβ=βmin
= 5/2 we get an approximate solution for the height of the

neck

ζβ=βmin
=

5

4Ω

((
3

2

)−4/5

− (Γ0 − 1)−4/5

)
. (4.7)

Numerical solutions of (2.15) and (2.17) were determined over the range 2.5 < Γ0 <

105 with ζβ=βmin
calculated and compared to the analytical approximation (4.7). These

results (figure 2) show good agreement, though (4.7) consistently overestimates ζmin as
the approximation Γ ≈ Γ − 1 tends to underestimate the value of dΓ/dζ resulting
in lower Γ values at any height. Other than slightly overestimating the neck height,
the approximate solution follows well the dependence of ζmin with Γ0 derived from
numerical integration.

An approximate solution for the plume radius as a function of height in the near
field is established by substituting (4.6) into (4.1) to give

β ≈ 31/4(3 + 8(Γ0 − 1)ζ )−1/4. (4.8)
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Figure 3. Plume radius as a function of height. The thick lines are numerical solutions and
the thin lines given by the matched solution (4.9). From left to right Γ0 = 10, 100, 500 and
1000.

A first-order approximation for the radius at all heights may be obtained by simply
summing the far-field result β = ζ and the near-field result (4.8):

β ≈ ζ + 31/4(3 + 8(Γ0 − 1)ζ )−1/4. (4.9)

This approximation is reasonable as the far-field result will have only a small effect on
the approximation in the near field where ζ is small. The approximate solution (4.9)
was compared to numerical calculations for a range of source conditions (figure 3).
Clearly (4.9) provides a good approximation near the plume source; however, in the
far field the agreement is not as good. Although the radial growth rate of the plume
is correct, the offset for the virtual origin of the plume is not modelled.

Having established approximate solutions for Γ and β near the plume source we
can now establish the near-source power-law relationships for the plume fluxes m and
q . These fluxes can be expressed in terms of β and Γ by rearranging (2.10) and (2.12)
to get m = β4/3Γ

2/3
0 Γ −2/3 and q = β5/3Γ

1/3
0 Γ −1/3. This leads to

m =

(
Γ0 − 1

Γ − 1

)2/5

≈
(

8

3
Γ0ζ + 1

)1/2

, (4.10)

q =

(
Γ

Γ0

× 1 − Γ0

1 − Γ

)1/2

=

(
Γ0 − 1

Γ0

)1/2 (
1 +

1

2Γ
+ · · ·

)
, (4.11)

for 1/Γ < 1. Thus, for Γ � 1, q ≈ 1 (4.11), i.e. the leading-order term for the volume
flux is a constant and, therefore, there is negligible entrainment. For example, in the
transition from Γ0 = 1000 to Γ = 100 there is an increase in q of only 0.5%. Again,
this result was achieved using a constant entrainment coefficient in our model. In
fact, to leading order the flow is independent of α. It is therefore reasonable to con-
clude that the suppressed entrainment observed in lazy plumes (for example Bhat &
Narasimha 1996) does not necessarily imply a smaller value of α but rather a need
to accurately model the source conditions of the plume.
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Parameter Γ ≈ 0 Γ = 1 Γ � 1 α = 0

β ζ ζ (c + ζ )−1/4 (c + ζ )−1/4

q ζ ζ 5/3 ζ 0 ζ 0

m ζ 0 ζ 4/3 m0 + ζ 1/2 m0 + ζ 1/2

w ζ −1 ζ −1/3 ζ 1/2 ζ 1/2

g′ ζ −1 ζ −5/3 ζ 0 ζ 0

Γ ζ 2 ζ 0 ζ −5/4 ζ −5/4

Table 1. Power-law behaviour of various plume parameters with height (ζ ) in the near-source
region for various values of Γ . The pure-plume behaviour is as presented by MTT and c is a
constant.

Identical scalings to those of (4.10) and (4.11) are obtained on solving the plume
conservation equations in the absence of entrainment. On setting α = 0, the solution
of (2.1) subject to (2.2) yields the constant-volume-flux, constant-buoyancy-flux
accelerating flow q = 1, f = 1 and M = M0 +

√
2QFz. Based on the results

established here and similar analysis for forced plumes we can establish the near-
source scalings for all the major plume parameters, as summarized in table 1.

We return now to our original definition of Γ0, (2.4), as being the square of the
ratio of the momentum jet length (LM (0)) and the source volume flux length scale
(LQ(0)). For small Γ0, LM > LQ, the flow behaves like a constant momentum flux jet
as there is an excess of momentum flux at the source relative to the equivalent pure
plume (Morton 1959). A lazy plume can therefore be regarded as a plume with an
excess of volume flux LQ > LM , see (2.4) and Caulfield & Woods (1995). Therefore,
near the source, the flow would be expected to behave as a constant volume flux flow
while the momentum flux adjusts to the pure-plume balance (Γ = 1), analogous to
the constant momentum flux adjustment for forced plumes.

5. Conclusions
The constant-entrainment-coefficient plume model of MTT has been re-cast as a

set of equations for the plume radius β , flux balance parameter Γ and the off-source
‘heating’ parameter Λ. Using this set of equations we have shown the far-field flow
for a plume with a linear internal buoyancy gain with height to be lazy with a
radial growth rate lower than for a pure plume. The solution of these equations also
indicates that the velocity of this plume is independent of height. As the plume is
lazy in the far field it will have a momentum flux deficit and, therefore, the rate
of entrainment will be lower than for a pure plume. This reduced entrainment in
plumes with internal buoyancy gains has been cited in the past as implying the need
for a variable-entrainment-coefficient model (see Sreenivas & Prasad 2000). However,
our analysis implies that the constant-α formulation of MTT also leads to reduced
entrainment. We therefore believe that when modelling these flows it is key to establish
the correct source conditions and buoyancy flux gain rate before appealing to the
additional complexity of a variable-α model.

This formulation was also used to examine the near-source region of highly lazy
plumes from horizontal area sources. Approximate solutions were derived for the
radius β and the flux balance parameter Γ in this region. From this, the power-law
behaviour for the buoyancy, volume and momentum fluxes and vertical velocity was
established. These power-law relationships are summarized in table 1. The constant-α
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formulation leads to a region of constant volume flux (i.e. zero entrainment) in
the near-source region. Again this implies that it is possible to capture reduced
entrainment with a constant-α formulation. Though we are not suggesting that α is
a constant in all plume flows, it is clear that some reduced entrainment flows can be
modelled using a constant α.

G.R.H. and N.B.K. would like to thank the EPSRC and the Nuffield Foundation
(Grant no. NAL/00586/G) for their support of this research.
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